

CYSAT: SATELLITE

MISSION DESIGN
Final Report

Team Number: sdmay21-25

Client: M:2:I

Adviser: Dr. Phillip Jones

Team Members/Roles:

Alexis Aurandt -OBC Lead, Payload Sub-

Lead, and Voltage Boost Board Lead

Alex Constant -Ground Station Front-End

Lead

Chandler Jurenic -Payload Lead and OBC

Sub-Lead

Jeffrey Richardson -ADCS Lead

John Lenz -Radio Lead

Scott Dressler -EPS Lead

Team Email:

cysat-f2020@iastate.edu

sdmay21-25@iastate.edu

Team Website:

https://sdmay21-225.sd.ece.iastate.edu

Revised:

April 21, 2021

mailto:cysat-f2020@iastate.edu
mailto:sdmay21-25@iastate.edu
https://sdmay21-225.sd.ece.iastate.edu/

1

Development Standards & Practices Used
• NASA and CubeSat hardware standards

• Consistent code commenting and documentation for software

• Agile software development

• Code reviews by team before merges

• UART

• I2C

• Python 3+ for Ground Station

• PC-104

Summary of Requirements
• Needs to power up after been deployed from the International Space Station

• Needs to stabilize and point itself towards earth

• Needs to take soil moisture readings from Earth via a microwave radiometer

• Needs to transmit data back to the ground station in Ames, IA

• Needs to be able to collect data for its orbit life (6 months)

• Must deorbit successfully at the end of lifetime

• Needs to meet NASA’s CubeSat requirements

Applicable Courses from Iowa State University
Curriculum
CPR E 288: Embedded Systems

CPR E 488: Embedded Systems Design

CPR E 489: Data Communications

COMS 309: Software Development Practices

Executive Summary

2

New Skills/Knowledge Acquired
• Python UI Development (Tkinter and PyQt5)

• Python

• PC-104 Standard

• I2C Communications

• Raspberry Pi Environment

• PCB Soldering

• Python GNURadio

3

Table of Contents
Development Standards & Practices Used .. 1

Summary of Requirements .. 1

Applicable Courses from Iowa State University Curriculum .. 1

New Skills/Knowledge Acquired .. 2

Table of Contents ... 3

1 Introduction .. 6

1.1 Acknowledgement .. 6

1.2 Problem and Project Statement ... 6

1.3 Requirements ... 7

1.3.1 Functional Requirements .. 7

1.3.2 Nonfunctional Requirements .. 7

1.3.3 Standards ... 7

1.4 Operational Environment and Engineering Constraints ... 8

1.4.1 Ground Station Constraints... 8

1.5 Intended Users and Uses .. 8

1.6 Assumptions and Limitations.. 8

1.6.1 Assumptions .. 8

1.6.2 Limitations ... 8

1.7 End Product and Deliverables... 8

2 Project Plan ... 10

2.1 Task Decomposition.. 10

2.2 Risks and Risk Management/Mitigation ... 14

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria ... 15

2.4 Project Timeline/Schedule .. 16

2.5 Project Tracking Procedures ... 17

2.6 Personnel Effort Requirements .. 17

2.7 Other Resource Requirements ... 18

4

2.8 Financial Requirements .. 18

3 Design ... 19

3.1 Related Products and Literature ... 19

3.2 Design Thinking ... 19

3.3 Proposed Design ... 20

3.4 Technology Considerations .. 22

3.5 Design Analysis ... 23

3.6 Development Process ... 23

3.7 Current Design Plan .. 25

3.7.1 Ground Station Design .. 25

3.7.2 Radio Design Plan .. 27

3.7.3 ADCS Design Plan .. 28

3.7.4 Voltage Boost Board Design Plan .. 28

3.8 Changes in Design Plan from Previous Semester ... 29

3.8.1 Ground Station Design Evolution .. 29

3.8.2 Radio Design Evolution ... 30

3.8.3 Payload Design Evolution .. 30

3.8.4 OBC Design Evolution .. 30

3.9 Security Concerns and Constraints ... 31

4 Testing Process and Results .. 31

4.1 Performance Testing ... 31

4.2 Integration/System Testing .. 31

4.3 Regression Testing .. 32

4.4 Results ... 32

4.4.1 OBC / Ground Station Integration Partial Results ... 32

4.4.2 Boost Board Testing Results .. 34

4.4.3 Third Mock Launch Results ... 34

5 Implementation .. 35

5.1 Ground Station Implementation Details .. 35

5

5.2 Radio Implementation Details .. 36

5.3 Payload Implementation Details .. 36

5.4 ADCS Implementation Details .. 36

5.5 OBC Implementation Details .. 37

6 Closing Material .. 37

6.1 Conclusion... 37

6.2 References .. 37

7 Appendix I: Operation Manual ... 37

7.1 Ground Station Operation .. 37

7.2 EPS .. 37

7.3 ADCS ... 38

7.3.1 Connection with OBC .. 38

7.3.2 ADCS Momentum Wheel Test .. 39

7.3.3 ADCS Control Test ... 39

7.4 Voltage Boost Board ... 39

7.5 OBC Enable Roller Switches .. 40

7.6 UHF Radio Test.. 40

8 Appendix II: Alternative Design Versions ... 40

8.1 Java Serial Ground Station .. 40

9 Appendix III: Other Considerations .. 41

6

1 Introduction

1.1 Acknowledgement
We would like to thank last year’s senior design team for providing handoff documentation,

providing guidance, and for being available for questions. Additionally, we would like to thank Dae-

Young Lee for his expertise and his guidance with the ADCS sub-system. Finally, we want to thank

Dr. Jones and Dr. Nelson for meeting with us weekly and for giving us guidance.

Additionally, we would like to thank M:2:I for providing documentation and information about the

current state of the CySat, as well as for providing remote access to necessary equipment.

1.2 Problem and Project Statement
The CySat is a cube satellite, a standardized form of miniature satellite for scientific

research. CySat will be deployed from the International Space Station, after which it will orbit the

earth for approximately 6 months with the goal of collecting and relaying soil moisture data back to

our ground station in Howe Hall on the Iowa State University campus.

 The CySat is a student project started and operated by M:2:I. The sole purpose of this

project is to get students engaged in a hands-on project, and the driving force behind the project is

students wanting to develop a satellite that will be launched into space. Originally, this project was

only for Aerospace engineering students, but M:2:I soon realized they needed Computer, Electrical,

and Software engineers to take care of the onboard electronics. This is where our senior design

team comes in. There are a number of subsystems that need our expertise.

The CySat comprises seven subsystems. These subsystems control the satellite’s orientation

with respect to the Earth, collect and process data, stream the data back to Earth during

communications windows, and provide ground control for the satellite. The subsystems are as

follows:

• The OBC communicates with all the other subsystems and ensures that the satellite is

operating according to specifications.

• The ADCS stabilizes and points the satellite toward Earth.

• The EPS regulates power from the solar cells.

• The radio relays data and commands between the CySat and Earth.

• The Ground Station receives data, sends commands, and acts as the interface between the

M2I satellite team and the satellite.

• The payload uses an SDR to gather soil moisture readings from earth.

• The voltage boost board converts voltage from the EPS to 7.4V required for the ADCS

7

1.3 Requirements

1.3.1 Functional Requirements
• Must power up no earlier than 30 minutes after deployment from the International Space

Station

• Must stabilize and point itself towards earth for data collection

• Must take soil moisture readings from Earth via a microwave radiometer

• Must be capable of transmitting SDR data back to the ground station in Ames, IA at a rate of

400 kb per week while within 500km of the Ground Station

• Must operate battery heaters based on the current operating temperature so as to prevent

battery charging at temperatures below 0° C

• Must disable 3.3 V and 5 V outputs if the operating temperature is greater than 55° C or if

battery voltage falls below 3.5 V

• Must collect data for its orbit life, a minimum of 2 months and a maximum of 6 months

• Must meet NASA’s CubeSat standards and regulations

• Must receive and execute commands issued by the Ground Station while within beacon

range (500 km)

• Ground Station must keep logs of sent/received commands and data, separated daily or

weekly

• Must successfully deorbit at the end of its lifespan, estimated to be 221 days

• Must begin detumbling when total orbital spin exceeds 40 rads/second

• Ground Station must implement GNURadio SDR to decode UHF signals

1.3.2 Nonfunctional Requirements
• Ground Station UI is performant and fault tolerant (no downtime)

1.3.3 Standards
• AX.25 Packet Protocol

• ESTTC Protocol

• PC-104 header for form factor and bus Layout

• NASA’s CubeSat standards and regulations

8

1.4 Operational Environment and Engineering Constraints
The CySat will be launched in space from the International Space Station, and it will orbit

the Earth for six months. This necessitates that the internal hardware of the CySat, as well as

software running on that hardware, are robust and capable of failure recovery with minimal loss, as

well as the stress from the initial launch.

1.4.1 Ground Station Constraints
• Written in Python 3

• Runs on Ubuntu 20.04 operating system

• Makes use of GNU Radio as an SDR

• Connects to external SDR receiver

1.5 Intended Users and Uses
Our senior design team and the M:2:I team are the end users for the CySat. Users on the

ground must be able to use the Ground Station to communicate with and control the CySat.

1.6 Assumptions and Limitations

1.6.1 Assumptions

• We assume correct installation of each sub-system by M:2:I.

• Software on the CySat is of the same version as what we used to implement the subsystem

functionality

1.6.2 Limitations

• The hardware and software of the CubeSat must comply with NASA regulations as well as

CubeSat standards, and the hardware must fit within a 10 x 10 x 10 cm cube in the satellite

housing.

• Access to testing on CySat components is limited

• Few operation times in lab due to COVID regulations

• Mock launches are the only feasible way of testing the subsystems

1.7 End Product and Deliverables
UHF Radio

Integration of a radio system into the Ground Station such that radio packets can be transmitted,

received, and decoded. The UHF Radio must be able to send out a beacon message, establishing

communication with the Ground Station. The Ground Station will send a command to the UHF radio

communicate the instructions to OBC. OBC will then send the requested data back to the ground

station through the UHF Radio.

9

Ground Station

The Ground Station will implement a GNURadio SDR, which will connect to an external SDR and

receive packets from and transmit packets to the satellite. The Ground Station UI will provide an

interface through which users can select and send commands to the satellite, and will log responses

to UI elements as well as to external log files.

SDR Payload

The payload will use a radiometer to receive data from the surface of the earth and transmit this

data from the SDR to the OBC using UART. This is then transmitted to the ground station using UHF

antenna. The SDR is idle unless the OBC commands it otherwise.

ADCS

The ADCS must be able to switch between modes of operations such as active and passive

detumbling. ADCS will send telemetry data to the OBC to be recorded / sent to the ground station

via radio. The ADCS will have tests ready to test the functionality of the ADCS module, and test it’s

implementation within the project.

The EPS

The EPS provides power to the rest of the satellite and reports its heath to the OBC. It controls

these systems differently based on the operating temperature and the battery voltage level. The

batteries are charged by the satellite’s solar panels.

OBC

The OBC is the heart of the entire CySat. The OBC must be able to communicate to all the different

subsystems. It must be able to efficiently read messages and give commands in order to achieve the

CySat’s purpose of successfully relaying moisture data back to Earth

The Voltage Boost Board

The voltage boost board take a 5V input from the EPS and amplifies it to 7.4V. This 7.4V is required

for the ADCS.

10

2 Project Plan

2.1 Task Decomposition
UHF(Ultra High Frequency) Radio

1. Receive and send packets from computer to radio for debugging Initial commands, packet

structure creation and testing.

One set of commands will be written in C for communicating via UART with the OBC.

Another similar set of commands will be written in python for communication with the

Ground Station via UART.

2. Debugging the data sent from the UHF and Kenwood.

A Hack RF antenna will be used with the Linux SDR GQRX to demodulate and decode UHF

 transmissions due to communication between UHF and Kenwood radio not being to be

 established.

3. Receive and send beacon and data packets to Ground Station

The UHF and Ground station should be able to communicate via UART without serial

 connection. The Ground Station will be integrating the commands created in task 1 to

 communicate.

4. 4. Receive and send commands to OBC.

The UHF and OBC should be able to communicate via UART without serial connection. The

OBC will be integrating the commands created in task 1 to communicate.

5. Receive and send packets from Ground Station to the OBC

Integrating the Ground Station and the OBC using the Ground Station radio and the UHF

radio. Ground Station should be able to transmit a request to the UHF radio which sends it

via UART to the OBC and vice versa.

Ground Station

1. Design and Implement GNU Radio Receiver

During the previous semester, the Ground Station communicated with a local Kenwood

radio over serial connection in order to send requests to and receive responses from the

Ground Station. Due to unexpected difficulty, in mid MarchM:2:I decided to move to a GNU

Radio Software Defined Radio.

11

2. Design and Implement GNU Radio Transmitter

Alongside the receiver, the Ground Station will need a GNU Radio Transmitter to transform

and transmit CySat packets wrapped in AX.25 packets to the satellite.

3. Implement Ground Station Commands

The Ground Station must implement a list of common commands. This will require

communication with M:2:I to determine which commands are desired for each subsystem.

These commands are things like requests for the EPS battery voltage, or request that the

Payload send data.

4. Parse Response Packets

The Ground Station must parse response packets in order to present them as readable data

for M:2:I users.

5. Implement Data and Command Logging

The Ground Station must write and store text file logs of sent and received data and

commands.

6. Implement Subsystem Health Visualization

The Ground Station should present a visualization of each subsystem that includes relevant

information, such as last health check and status.

7. User Testing (Ongoing)

On an ongoing basis the Ground Station will be shown to members of M:2:I, who will test

the Ground Station both for functionality and for usability. Results will drive UI and

functional changes on an ongoing basis.

Tasks 1 and 2 above are new to the new Ground Station requirements, and take precedent

in completion as they are blockers for testing the Ground Station to OBC connection through the

UHF properly. During the early part of the semester, tasks 3, 4, and 5 were implemented for OBC

and EPS subsystem commands in the previous Java Ground Station, which used a serial connection.

They must be reimplemented in the new Python GNU Radio Ground Station, but implementation

patterns can be reused.

12

EPS(Electrical Power System)

1. EPS Communication

The EPS needs to be able to receive commands from the OBC and return health checks.

2. EPS heath checks

The health checks must include accurate readings and proper units for various elements.

Currently, these elements are as follows: battery temperature, voltage and current inputs

and outputs, charging status, and battery voltage level. Additional measurements may be

added to this list in the future.

3. EPS charge and discharge

The charging capability of the EPS needs to be tested with the solar panels fabricated by

M:2:I. Upon verification, the EPS must be able to keep up with the power budget created by

M:2:I.

4. EPS battery protection

The EPS needs to be able to operate as specified within the satellite’s 4 modes of operation.

The EPS must be able to activate the heaters or initiate charging based on the data provided

in the health check.

Payload

1. Payload Communication

The software defined radio of the payload will be transmitting data collected by the

radiometer through UART to the OBC.

2. Payload Data Collection

The radiometer will be using a GNU radio to collect data from the surface of the earth via

commands from the OBC, which then transfers the data using the UHF antenna.

3. Payload Functionality

The payload will be powered by the EPS and require the OBC to use any of the data

collected by the radiometer.

13

ADCS(Attitude Determination and Control System)

1. Storing Telemetry data when out of ground station range

The ADCS will store telemetry data to the onboard SD card when not within range of the

ground station. This way, the properties of the orbit can be tracked and handled as soon as

the satellite is within range of the ground station.

2. Mode activation control

The ADCS will have multiple modes of operation defined to handle different types of orbital

spin. The ADCS reports telemetry data to the OBC which will decide which operation mode

to run the ADCS. During the initial orbit, the ADCS will not try to correct the orbital spin to

avoid worsening the spin with faulty sensors.

3. 8-bit Health check

The ADCS will perform a health check directly after the deactivation period follow launch.

This a testing criterion for the mock launch, and is used to demonstration proper connection

with the OBC.

4. Re-entry

At the end of the satellite mission, the ADCS must send the satellite into the upper

atmosphere to burn up on re-entry and not add to the amount of pollution orbiting Earth.

OBC(On-Board Computer)

1. OBC Communication with Interrupts

The OBC must be able to receive and send commands to each of the different subsystems:

Ground Station, EPS, UHF Radio, ADCS, and SDR Payload. The OBC must be able to

communicate to the EPS, UHF Radio, and ADCS through a single I2C bus, and the OBC must

be able to communicate to the SDR Payload over UART. The OBC will communicate to the

Ground Station through the UHF Radio. Once everything is communicating, interrupts must

be put in place. Specifically, there will be UART and I2C receive interrupts. This will allow the

OBC to not have to be idle while waiting for responses.

Voltage Boost Board

1. Voltage Boost Board Construction and Testing

The voltage boost board must be able to take a 5V input from the EPS and convert it to 7.4V

that the ADCS requires. The PCB has already been fabricated and the components have

already been purchased. All that remains is the soldering of the components and testing of

the board’s functionality.

14

2.2 Risks and Risk Management/Mitigation
Many of the risks associated with this project are difficult to mitigate, as they are related to

the satellite’s performance in space. The mitigation for these types of risks is to test extensively,

consistently, and well. Below are a few of the risks our team has chosen to identify based on

current knowledge of the CySat project.

Risk Explanation Estimated Probability

Loss of communication with
Ground Station

Risk of losing communication
with the ground control
station based off of the

tumbling of the CySat and the
doppler shift.

10%
Mitigated by having passive
detumbling modes for when
communication cannot be

established

Difficulties setting two-way
communication with a single

radio module

Communication between the
two radio systems has been

unresponsive.

95%
Debugging with a Hack RF SDR

to see the data send and
received from the radios will
give insight to the problem
and so it can be addressed.

Additionally, help from other
professors, online forms and
the manufactures have been

used.

Connecting OBC to other
subsystems

When integrating the separate
subsystems there is a

possibility previously working
functions not working

together.

70%
Through set mock launches,
we have used integration,
regression and system testing
to attempt to foresee and
address the issues.

Task exceeds expected time tasks which will need to be re-
evaluated based off of the

difficulty and time consumption
they are currently presenting.

95%
We have been using the scrum
workflow and communicating
blocker to the team to solve

pending issues
Table 1: Risks and Risk Management

15

2.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

Milestone: Ground Station Communication with UHF

Metrics: Ground Station receives and decodes packets from the UHF. Ground Station

packages and transmits packets, which the UHF receives.

Evaluation Criteria: Ground Station sends and receives packets over the GNU Radio SDR

with minimal data loss or corruption. Evaluate based on number of packets lost per 100

sent.

Milestone: Ground Station Logging

Metrics: Ground Station logs all commands and data sent/received

Evaluation Criteria: The Ground Station will log all data in order that it is produced/received

Milestone: Ground Station UI Health Visualization

Metrics: Ground Station accurately reports last received state of health checks from each

subsystem, or none if health check item has no reported responses during the application’s

runtime.

Evaluation Criteria: The Ground Station must report 100% accurately the received state of

subsystem health checks.

Milestone: Payload’s SDR Communicates with OBC

Metrics: The OBC will use UART to utilize the SDR to receive data that the SDR collected

using the radiometer application.

Evaluation Criteria: The OBC successfully can display the information that the SDR got from

the radiometer.

Milestone: Communication with OBC

Metrics: The OBC must be able to communicate to the EPS and ADCS through a single I2C

bus, and the OBC must be able to communicate to the SDR Payload and UHF over UART.

Evaluation Criteria: Everything must be able to communicate seamlessly

Milestone: ADCS has multiple operational modes defined

Metrics: Code for operational modes are implemented, such as active and passive

detumble. Operate within specified **

Evaluation Criteria: Operational modes are defined based off of the operation mode control

flow for ADCS. Each operation modes takes in telemetry data as well as OBC command data.

16

Milestone: OBC Communication Optimization

Metrics: Creating interrupts for UART and I2C will increase the speed and response time of

the OBC to outside communication from other subsystems.

Evaluation Criteria: The response time of the OBC will increase by ~50%

Milestone: Voltage Boost Board Completion

Metrics: Complete the voltage boost board to properly transform 5v to 7.4V.

Evaluation Criteria: Connect the boost board to a dummy load, test it with the expected

 current load for the ADCS. The transformed voltage must be within 0.1V.

2.4 Project Timeline/Schedule

Figure 1: Original Timeline

The scheduled launch date for the CubeSat has been pushed back beyond the scope of

Senior Design. The focus of the project was to establish communication with all subsystems, and

have working radio communication. This shift in priority, as well as hand-off date, has caused many

milestones to be pushed back.

The figure above is our estimated timeline from the end of 491. It reflects our

understanding of the project at the time, but significant changes and challenges occurred during

17

development that caused the schedule above to not reflect the necessities of the project. These

issues moved back handoff date, so our team was able to continue working on the satellite through

April and into May, if need be.

The Ground Station and UHF in particular were affected. During the early part of the

semester, the Ground Station tasks on the schedule above were implemented and tested

successfully. However, in mid-March, due to hardware difficulties with the Kenwood radio, the

Ground Station requirements changed to require a GNURadio SDR for receiving and transmitting

packets. The working version of the Ground Station at the time was a Java implementation, so the

Ground Station needed to be rebuilt in Python – as well as receive data not through a serial

connection to an external radio, but through a custom SDR for reception of signals from the

satellite. Between mid-March and the end of the semester, the focus of the Ground Station and

UHF teams were to research, design, and begin to implement a GNURadio Software Defined Radio

for receiving signals from the UHF.

The remaining subsystems and their schedules have been pushed. The milestones that

remain will be implemented by future engineers This was due to the first semester actually being

focused around making an emulation of the SDR hardware and then the SDR becoming last priority

for the project.

2.5 Project Tracking Procedures
Our team has been using a Gitlab repository for version control. We used Gitlab’s issue boards

to keep track of tasks and their relevant commits and branches, and to build and maintain a backlog

of tasks. See section 3.6 for a more in-depth discussion of the specific development process we

have adhered to over the course of the project. The repository has been managed by team lead

Jeffrey Richardson. We have also been using slack for scheduling meetings, communicating about

tasks, and asking questions.

 Finally, we have been producing weekly status report detailing tasks performed, hours

worked, current impediments to progress, and planned work for the next week to our faculty

advisor as well as to M:2:I.

2.6 Personnel Effort Requirements
We provide below the planned effort hours at the beginning of the semester. The ADCS, EPS,

and OBC subsystems accurately reflect the effort done and the relevant task breakdown. Due to the

rapid changes from our client M2I, and the changing of our launch date, the Ground Station, UHF

Radio, and SDR do not accurately reflect the work and effort being done.

18

Our work over the past academic year has been documented on GitLab. This has the most

accurate representation of our effort hours, and the task decomposition for the ground station and

UHF. In total, 113 tasks have been completed across all subsystems. Additionally, our team has

maintained a constant weekly velocity through the project.

2.7 Other Resource Requirements
This project was in direct collaboration with M:2:I. The M:2:I team has assisted us with access

to appropriate hardware and lab time throughout the semester, as well as valuable feedback and

guidance when requested.

2.8 Financial Requirements
CySat’s finances are managed by M:2:I, and our senior design team made no financial decisions

over the course of this project.

Figure 2: Personnel Effort Requirements

19

3 Design

3.1 Related Products and Literature

The CySat software project was inherited from last year’s senior design and was originally

started by Iowa State’s M:2:I in 2017. As such, the design process has largely already been

completed. Due to the project being several years old, the records of previous work are extensive

and accessible through CyBox and Iowa State’s ECE GitLab.

CubeSats have been in use for about 15 years, and all are fairly uniform in terms of design

and operation. The CubeSat initiative is meant to provide “opportunities for small satellite payloads

build by universities, high-schools, and non-profit organizations to fly on upcoming launches” [1]. It

is meant to provide a means for non-professional organizations to work on solving problems in

satellite design, as well as obtain potentially valuable scientific data for their own purposes or goals.

There are a number of open-source projects available that implement GNU Radio Ground

Stations for amateur satellites. One of these is the Heron MkII, a student satellite created by the

University of Toronto Aerospace Team [2]. Their GNURadio implementation of the

reception/transmission is not perfectly applicable to our project, but could provide a decent basis

moving forward.

3.2 Design Thinking
The overall design for the satellite was decided upon by M:2:I before our teams’ inclusion in

the project. Therefore, our design thinking tended to focus more on development internal design

that allowed for more streamlined development of functionality. To this end, quite a bit of design

this semester focused on the design of individual commands, especially with respect to how best to

group subsystem health into meaningful commands that allow the satellite to respond with

meaningful data that describes some slice of health for a subsystem. We developed relevant

commands which packaged multiple health checks (such as voltage checks for multiple busses) into

single commands, so that end users could obtain answers to multiple questions about the satellite’s

health with a single command.

20

3.3 Proposed Design

Figure 3: Proposed Satellite Communication Design

The ADCS and the EPS are on the same I2C bus because this simplifies the communication

protocol between the OBC and those subsystems. The UHF is connected over UART because most

of the commands for the UHF or only accessible over UART. The SDR is connected over UART

because the FPGA for the SDR only has a UART connection. Additionally, the OBC has three UART

connections – one of which will be used for a connection to a debugging computer while in

development. The Ground Station is connected to the GNU radio over UART as that is the only

available serial connection with which the PC running the Ground Station may interface. The ADCS

is of particular importance here, as the SDR payload requires that the satellite be pointed towards

earth in order to function. Although many CubeSats do not include the ADCS, the CySat does, as the

ADCS will be needed to orient the satellite so that the SDR can take data. The connections in Figure

3 are referenced below in relation to which requirement they help to fulfill.

21

Requirement Relevant Connections Explanation

Must power up after been
deployed from the
International Space Station

OBC/EPS The OBC and EPS will
communicate to ensure that
the satellite has power and
powers up after the required
30-minute waiting period after
deployment from the ISS

Must stabilize and point itself
towards earth

OBC/ADCS The OBC will communicate
with the ADCS to begin and
maintain detumbling and
orientation

Must take soil moisture
readings from Earth via a
microwave radiometer

OBC/SDR Payload The SDR collects data, which
the OBC will retrieve using
UART and then compile

Must transmit data back to the
ground station in Ames, IA

OBC/UHF Radio/GNU
SDR/Ground Station

The OBC will send data to the
GNU SDR Radio through the
UHF, which will be received by
the Kenwood radio which will
communicate that data to the
Ground Station

Must collect data for its orbit
life (6 months)

All connections All connection on the satellite
work towards the overall
mission goal of the satellite

Must meet NASA’s CubeSat
standards and regulations

All connections All connections have been
specified by M:2:I to conform
to these standards and
regulations

Must receive and execute
commands issued by the
Ground Station

Ground Station / GNU
SDR/UHF/ OBC

The Ground Station will
communicate through the
UART connection to the
Kenwood, which will
communicate with the OBC
through the UHF Radio

Must successfully deorbit at
the end of its lifespan

Ground Station / GNU
SDR/UHF/OBC /ADCS

The ground station will signal
an EOL beacon to the satellite
through the connections
described above, and the OBC
will communicate the
intention to begin deorbiting
to the ADCS

Table 2: Subsystem Design Requirements

22

The non-functional requirement for the Ground Station performance is related to

implementation, rather than design.

The design decision not shown in the diagram above is the CySat Packet Protocol. This

design decision is somewhat between a design and implementation decision. The overview of the

packet protocol is that it is a standardized packet size that allows for easy decomposing of packets

to allow for routing of messages by the OBC. It comprises a 1 byte start character, a 1 byte

subsystem type, a 1 byte command, a 1 byte data length field, N bytes of data, and 1 byte

checksum.

Figure 4: CySat Packet Protocol

3.4 Technology Considerations
Due to the expensive nature of the satellite subsystem parts, as well as the lack of remote

access to the lab, in some cases, it can be necessary to use a stand-in discovery board instead of the

OBC. For this purpose, we’ve chosen the STM32F429ZI Discovery board. This board uses the same

chipset as the OBC, but the pin outs are different. This makes this discovery board a good stand-in

for the OBC, as code written on it will function the same as it will on the final OBC.

The previous CySat team used an STM32Workbench Eclipse plug-in for debugging and

running code on the Endurosat OBC and the STM32F429ZI Discovery Board. Our team decided to

move forward with using the STM32CubeIDE. The STM32CubeIDE allows for faster debugging (i.e.

stepping over, stepping into, etc. are faster on the IDE). The STM32CubeIDE also allows for easy

integration between the STM32CubeMX which allows for easy initialization of the different modules

and associated interrupts (UART, I2C, etc.).

Due to difficulties with the Kenwood radio that was originally the Ground Station receiver.

The new Ground Station requires a GNURadio SDR solution, which requires a connected SDR

receiver. Currently, we are using the NESDR Nano 2 Plus USB connected SDR Receiver in order to

receive AFSK AX.25 packets from the Kenwood radio in order to work towards designing the

GNURadio flowgraph.

23

3.5 Design Analysis
The design, provided by M:2:I and decided upon before the current senior design team joined

the project, provides for communication between all onboard subsystems and the OBC. This allows

for the implementation of commands that, when sent between these subsystems, can control the

behavior of each satellite subsystem according to the requirements of the project. The Ground

Station underwent a significant change in requirements during the semester, and research is still

being performed into the underlying design of the GNU Radio SDR.

However, the design of the Ground Station UI remains largely unchanged from previous

semesters. The largest change is that the previous semester’s Ground Station UI design contained

no visualization or data display for current satellite subsystem health items (such as current battery

bus voltage), while the new design centers these displays for the user.

Finally, the CySat packet protocol allows for the OBC and Ground Station to coordinate on

common commands and responses that help to achieve the functionalities required. Each

command has two forms: a request (either for data or behavior) from the Ground Station, and a

response (either the data requested, or a response about the action to be taken). The protocol

contains all relevant data for the Ground Station and OBC – the target subsystem, the command,

the length of the included data, the included data, and a checksum for the packet. Implementations

of the same command on the OBC and the Ground Station allow each to interpret the received

packet as a request or response and parse/display the command (in the case of the Ground Station)

or address the command to the target subsystem (in the case of the OBC).

3.6 Development Process
In order to manage these tasks, we used a modified SCRUM process with week-long sprints.

During our weekly sprint meetings, we created stories, which were mapped to Gitlab issues, that

correspond to required functionalities for the CySat. A story encompasses a single, small unit of

functionality. In the case of the Ground Station, for example, this could be the implementation of

page wherein users can send signals to a specific subsystem. Each story has an associated checklist

comprising required functionality, documentation, and a brief description of the task. We ordered

the stories by priority, discussing priority with M:2:I and our faculty advisor. At the weekly sprint

meeting, the CySat team will agree upon a number of story points for each story. These story points

will roughly equate to person-effort-hours, difficulty, and unknowns, although the relationship will

not be 1 to 1.

At each sprint meeting, the CySat team met and selected their task from the prioritized

backlog a number of stories that will be worked during the sprint. At the end of each sprint, we will

evaluate how many points have been completed, and how many have fallen through. In this way,

we were be able to quantitatively track progress on tasks and address slow-downs and unexpected

24

blockers as they arise. In order to determine whether a story is complete, we used the definition of

it being done. For our team, this meant that a completed story meets the following criteria:

1. The code functionally meets the stated requirements in the story

2. The code has been reviewed by at least one other CySat team member, and one of the

subsystems lead or sub-lead.

3. The code is documented

4. In the case of documentation tasks, the documentation is understandable and exhaustive

5. Other functionalities for the associated subsystem remain in place

Most stories were worked on in a Git branch. Branches will require review and must have

met the above definition of done before they are merged into master. When a team member

placed a task into review, they must have included with it test procedures which will outline a

manner in which others may test the code. In the case that tests cannot be performed by other

team members, a PowerPoint or document must be included showing screenshots of the

functionality. Code reviews consisted of team members inspecting the code for potential defects as

well as confirming that they are able to perform the functions that are part of the test procedures.

The SCRUM approach

described above allows for

consistent communication

between members of the CySat

team and the M:2:I community,

and the short sprint time ensures

that if a task fails, or falls behind,

the team will be made aware of it

quickly and attempt to remove

the blockers that prevent the

task’s completion.

Once necessary

functionalities were in place, we

entered a testing phase, during

which we will perform acceptance

testing, described in section 4.3,

as well as extensive manual

testing of the interfaces between

the subsystems.

The right is a diagram

outlining our team process.
Figure 5: CySat Team Process

25

3.7 Current Design Plan

3.7.1 Ground Station Design
The first figure below shows how data will flow through the Ground Station UI. Below,

Decode Packet and Encode Packet will have to perform the duties not only of decoding/encoding

CySat Packets, but also of serving as a sink (in the case of decode) and source (in the case of

encode) for the GNU Radio SDR, so that the UI can receive and send commands. This SDR will be

written using the flowgraph-focused GNU Radio, a mature open-source software toolkit that

contains functionality for a large variety of amateur radio applications.

The Log Handler will make use of Python’s logging module in order to push messages to a UI

Scrolling Log so users may see data come in in real time, as well as saving those same logs to a log

file that will rotate based on day. These are built-in functionalities of Python logging module, and

were implemented successfully in earlier Ground Stations.

A preliminary UI design for the Ground Station can be found on the following page. The

design is intended to be low-context, so that users will not have to click through menus or on tabs

in order to see important information about the status of various satellite elements. The top right of

the application is the main screen. It shows current information about the Satellite, derived from

the last time the application requested that information. For example, a field under EPS Status may

be EPS voltage, and a status may be 4.5V with a timestamp indicating when that response was

received from the satellite.

Below that is the command request sending bar, in which users can select a command to

send to a subsystem, such as a request for EPS voltage, using the provided dropdown menus. These

menus are repurposed from the previous Ground Stations, and will dynamically update available

commands based on the selected subsystem. The data field text input is optional and may be

required by a few commands. Whenever a selected menu item changes, the command represented

by the user’s selections will be checked for validity against a loaded-in command manifest that

Figure 6: Ground Station Communication Diagram

26

contains relevant requirements for each command. If the packet is valid, the Send Request button

will become enabled – otherwise, the button will be disabled.

A Cyclone themed color palette will be introduced to the application (similar to the Java

Ground Station, see Appendix) that will help to direct users’ eyes towards important information.

The Ground Station GNURadio SDR is being designed currently by the Ground Station and

the Radio leads. Due to the short design time and a lack of previous knowledge in the field of FM

signal reception and transmission, the design is making incremental progress against increasingly

difficult tests. The current design, whose GNURadio flowgraph is shown on the following page,

attempts to receive, demodulate, and decode an AFSK AX.25 Packet from the Kenwood Radio.

Figure 7: Ground Station UI Design

27

3.7.2 Radio Design Plan
An SDR transceiver for the Ground Station using GNU Radio will be designed to demodulate

an incoming FM GFSK signal and decode it using the AX.25

protocol. The signal data will be analyzed and logged by the

Ground Station. The Ground Station will implement

specified ESTTC UHF radio commands, from the UHF

Transceiver Type II manual in Appendix I, in python that is

required for communication with the UHF and the OBC.

The SDR on the Ground Station will format the command to

the OBC in the Cysat packet protocol and encode the

command encode using AX.25 and modulate the

appropriate signal command back to the UHF radio. The

OBC will implement ESTTC UHF radio commands in C and

communicate with the UHF over UART.

Figure 8: GNU Radio Initial Design

Figure 9: ADCS Flow Diagram

28

3.7.3 ADCS Design Plan
The ADCS is responsible for determining orientation and other telemetry data, and adjusting

the tumble of the CubeSat. The course of the satellite will be adjusted by an active and a passive

detumble mode. The active detumble mode as a chance of over correcting orientation if the

instruments are faulty, therefore, the ADCS will enable passive detumble mode directly after the

CubeSat has been launched in an attempted to slow the tumble and establish communication with

the ground station. Once communication is established, and the proper health checks are made, the

system will switch to an active detumble mode for best use of the SDR. If connection is lost with the

ground station, the ADCS will re-enter the passive detumble mode.

3.7.4 Voltage Boost Board Design Plan
The voltage boost board provides a voltage boost so that the ADCS can function properly.

The EPS bus voltage is only 5V, but the CubeADCS, purchased from a different manufacturer than

the rest of the subsystems, requires 7.4V. Additionally, the boost board must fit the footprint of the

satellite and output at least 1A.

For this purpose, a Pololu 7.5V Step-Up board was soldered to a prototype board which fits the

satellite footprint. The completed design is below:

Figure 10: VBB Connection Diagram (Left) and Soldered Boost Board (Right)

29

3.8 Changes in Design Plan from Previous Semester

3.8.1 Ground Station Design Evolution
The Ground Station has evolved both in terms of design and requirements since the

previous semester. The Ground Station whose design was discussed in the previous design

document, and which was iterated upon until mid-March, received signals through a Kenwood radio

connected to the host device’s COM Port. However, challenges with the Kenwood Radio’s reception

of UHF Transparent Mode packets prompted a move towards a Ground Station which implements

and receives data from / sends data through a Software Defined Radio (see Fig. 6).

Additionally, the design of the Ground Station UI itself was improved upon. During testing

on the Ground Station during the early part of this semester, we encountered a bug in the Python

serial library used to connect to the COM Port and read/write to it. The serial library would, at

times, not connect to a connected COM Port. Some research revealed that this was a known bug in

the library. Given that the Ground Station had been inherited from a previous team and had a

number of design flaws (poor separation of concerns and code for data processing inside UI

elements were the most prevalent two), we decided to move forward with reimplementing the

Ground Station in Java instead of Python, to make use of Java’s JavaFX framework, which

encourages good design practices by separating out concerns into UI elements and associated

controllers. Screenshots of the implemented design can be found in [Appendix II: Previous Designs].

One of the features of the old Python serial Ground Station was its ability to populate its

available commands from a provided command manifest. The command manifest was a plain text

file with minimal structure, and didn’t carry information about commands that would make parsing

them much simpler, such as length of the data field. For that reason, and to take advantage of

engineering standards for parse-able markup languages, the command manifest format was

redesigned to use XML. The format for the command manifest, used in the Java Ground Station

(and planned for use in the Python GNURadio Ground Station), follows:

<command-manifest>
<subsystem subsystemByte=”0xXX” name=”subsystem_name”>

<command name="command_name">
 <request cbyte="0xXX" datalength="0xXX"></request>
 <response cbyte="0xXX" datalength="0xXX"></response>
 </command>

…
</subsystem>
…

</command-manifest>

30

This format, while more overhead than the previous command manifest, carries important

information about the data length expected from the satellite, and allows for more consistent

parsing of packets into readable format for log output.

Finally, this Java design was scrapped as the requirements for the Ground Station shifted to

a GNURadio Software Defined Radio solution, whose design is still underway.

3.8.2 Radio Design Evolution
The Radio’s design has changed significantly since last semester. Last semester we were

using a Kenwood TH-D72E to transmit and receive commands and data from the UHF radio.

However, communication of data using transparent mode between the UHF and the Kenwood was

unable to be established. Because this issue was not able to be resolved, halfway through the spring

semester the Kenwood radio was switched out for a software defined radio. The software defined

radio would be using a program called GNU radio with a repository called gr-satellites. Additionally,

we now using a Hack RF SDR antenna to see the data being produced by the UHF.

3.8.3 Payload Design Evolution
The Payload in the previous semester faced a major obstacle from the pandemic. With no

access to the lab, nothing could be tested on the SDR. Because of this, a new version of the SDR had

to be created. After long hours of research on how to go about this, it was completed using a

Raspberry Pi. The following semester the SDR then got put on the back burner due to the priority of

other subsystems, which halted development of the software for the SDR completely.

3.8.4 OBC Design Evolution
The OBC underwent a few design changes during this semester. The first change is that the

OBC connection to the UHF was changed from I2C to UART. This was due to new knowledge gained

this semester that some UHF commands require a UART connection.

Additional design work went into defining the contents of commands, and building them out.

This was done in conjunction with other subsystems. Each subsystem header file contains a number

of read/write functions that can be called to gather information about the current state of the

subsystem. These reads/writes contain data such as voltage, or flags that represent subsystem

internal states. There are a large number of these commands. If we created an individual command,

using the CySat packet protocol, for each possible read/write for each subsystem, we would quickly

run out of different commands, as each is defined by a single byte, and each requires a request and

a response, which limits the byte space available for commands. Therefore, commands from the

31

Ground Station usually request a package of data – an example command is EPS Voltage, whose

response data contains not one but multiple different voltage values for different batteries and

busses. The Ground Station then receives the response and parses the data field to find the

expected data and report each voltage in turn, in the case of the EPS Voltage request command

example above. An additional choice was made to return float values as half-floats, which only

occupy two bytes, as the loss in precision is offset by the increased ability to package data into

groups.

3.9 Security Concerns and Constraints
Our team has not identified any significant security concerns or constraints for our satellite.

4 Testing Process and Results

4.1 Performance Testing
A series a commands and data of varying size and content will be sent between the Ground

Station and the OBC via the radios. Validation that information is correctly received, demodulated,

and decoded will be done remotely and or manually. Documentation of the procedures and the

expected results will be made.

4.2 Integration/System Testing
The communications interfaces between different subsystems were tested using

development boards which will emulate the other side of the connection. We adhered to using

strict communication standards, as well as ensured that emulated connection types are the same as

final design connection types. This helped to ensure that once all components are fit together

before the “mock launch” (described below) they would communicate in expected ways. This

testing was manually performed by the CySat senior design team as we implemented the project,

and consistent communication between subsystem leads ensured that, if discrepancies arise

between expected communication and actual communication, those discrepancies were solved

before moving forward.

32

We have created this high-level overview of integration and system tests called “mock

launches” that we have laid out to systematically keep track of the progress made. The satellite’s

launch is currently unscheduled, but it has a Vibration test scheduled for some time in June. After

this test, the satellite can no longer be dismantled – therefore, our top priority was to focus on the

internals of the satellite.

4.3 Regression Testing
Throughout the project which requires us to have another teammate to perform a code

review. The code review was focused ensuring the provided code was functional, as well as to

ensure previously working code was still working. Part of these code reviews including running old

tests to ensure that functionality remained.

4.4 Results

4.4.1 OBC / Ground Station Integration Partial Results
During the early part of the semester, when the Ground Station was still using a serial UART

connection to communicate with the OBC, EPS commands were tested by connecting the Ground

Station directly to the OBC through UART. The OBC returned mock data, which the Ground Station

indicated it had received through the UI log. The screenshot taken of this is of very poor quality, and

doesn’t demonstrate the results well enough to include here.

Figure 11: Mock Launch Schedule

33

However, results were further confirmed when the Ground Station implemented parsing

and data display. An STM-324f Discovery Board was loaded with the OBC program, and mock data

was returned for all EPS commands. The following is a screenshot of the Ground Station’s UI log,

demonstrating good results:

Figure 12: OBC EPS Command Test Results

Although the Ground Station portion of these results are no longer applicable, as the serial

Ground Station was abandoned, these tests did confirm the accuracy of the commands

implemented by the OBC.

34

4.4.2 Boost Board Testing Results
The completed Boost Board was tested while connected to the EPS to ensure that the

output voltage remained above 7.4V. The results of these tests follow. The Output Voltage

remained above the required 7.4V for the ADCS.

5V input

Input Current Output Current Output Voltage In-Out

0.25 0.2407 7.63 0.0093

0.3 0.2898 7.624 0.0102

0.35 0.3394 0.0106

0.4 0.3887 0.0113

0.45 0.4375 0.0125

0.5 0.4863 0.0137

0.55 0.5353 0.0147

0.6 0.5841 0.0159

0.65 0.6327 0.0173

0.7 0.681 0.019

0.75 0.7301 0.0199

0.8 0.7793 0.0207

0.85 0.8279 0.0221

0.9 0.876 0.024

0.95 0.9244 0.0256

1 0.9733 0.0267

1.05 1.0214 7.627 0.0286

1.1 1.0705 0.0295

1.15 1.1177 0.0323

1.2 1.1645 0.0355

1.25 1.2093 7.627 0.0407

2.5 1.87 7.621 0.63
Figure 13: Boost Board Testing Results

4.4.3 Third Mock Launch Results
The third mock launch, which includes the OBC, EPS, ADCS, and Boost Board, was performed

on April 17th, and all components were found to communicate as expected. In a figure on the

following page, we get the Unix time reported by the ADCS - which also means the ADCS is

successfully being powered by the Voltage Boost Board.

35

5 Implementation

5.1 Ground Station Implementation Details
The Ground Station as a subsystem experienced a drastic shift in requirements around the

middle of March. This included the building of a Python GNU Radio Software Defined Radio through

which the Ground Station could receive and send packets. Since then, the majority of effort on the

Ground Station side has gone into learning about FM signal demodulation, as well as testing and

tweaking some initial receiver designs against packets sent by the local Kenwood. Implementation

of the UI side of the Ground Station has not quite begun, due to the decision to focus on the GNU

Radio side.

However, it has been decided that PyQt5 will be used as an application framework for the

development of the UI, as it has bindings for GNU Radio, and GNU Radio has graphical PyQt5 blocks

that can help in debugging signals. Additionally, many of the details of the Ground Station UI

functionality were developed and implemented successfully during development of the Java Serial

Ground Station between February and Mid-March, such as log file handling and UI menu flow. In

many cases, the choices made in the Java Ground Station can be ported over to the new PyQt5 with

semantic changes from Java to Python, with occasional changes to due available APIs for PyQt5.

A first pass implementation of parsing the command manifest in Python has been completed.

The Command Manifest class is backed by is a dictionary of dictionaries. The outer dictionary

defines key-value pairs where the key is a tuple of (subsystem name, subsystem byte) and the value

Figure 14: Third Mock Launch Test Results

36

is a dictionary of commands. This inner dictionary uses the command name as a key, and the value

is a Command class object that contains information about request byte, response byte, response

length, and request length.

5.2 Radio Implementation Details
The radio has been implemented up to task two, as seen in the task decomposition section

2.1. The UHF radio has been able to communicate using a beacon mode but has not been able to

use the transparent mode used in raw data transfer. The Kenwood radio was receiving gibberish

instead of data from the UHF radio since the project has begun. A lot of effort from the senior

design team, professors, outside resources, the manufacturers, and the client have been put in to

get communication up and running, but to no avail. The issue was believed to be due to the

Kenwood radio, which prompted the switch to an SDR for the Ground Station. The SDR for the

Ground Station went through several iterations and is still in development. Receiving, but not

properly decoding a transmitted signal. Commands for the UHF on the OBC have been fully

implemented and tested.

5.3 Payload Implementation Details
Though payload software was not implemented during the process of this project, the details

were still planned. The SDR was to start the radiometer application when being powered. After, the

data collection and communication with the LNAs needed testing. Once completed, communication

between the OBC and SDR was to be completed using UART. Capture mode has been implemented

by the previous team, and was to be tested again once transfer mode for the SDR was completed.

5.4 ADCS Implementation Details
The ADCS has implemented several helper functions on the OBS to easily call the functionality

of complex tasks on the ADCS. These functions include:

• Angular rate Estimation

• Detumbling (Active and Passive)

• Initial Rate Estimation

• Magnetometer Calibration

• Magnetometer Deployment

• Y Momentum Mode Activation

The design of these function has been commented and included as a spread sheet for a future

ADCS engineer. Additionally, several tests have been coded to check the functionality of the

actuators and the sun-sensor.

37

5.5 OBC Implementation Details
The OBC lead has developed a list of all I2C commands being used by the OBC. We have added

support for the use of interrupts with some of these commands. Additionally, many of the read / write

functions have been updated to support pass-by-pointer rather than print the respective information.

6 Closing Material

6.1 Conclusion
We would like to reiterate our thanks to M:2:I for providing guidance and support during this

project. Although we were not able to complete the project, we feel we have learned a great deal

about satellite software and design work in general.

6.2 References
[1] Jackson, S. (2017, February 17). NASA's CubeSat Launch Initiative. Retrieved October 26, 2020,

from https://www.nasa.gov/directorates/heo/home/CubeSats_initiative

[2] University of Toronto Aerospace Team, Space Systems Division, Heron MkII. Retrieved March 20,

2021, from https://github.com/HeronMkII

7 Appendix I: Operation Manual

7.1 Ground Station Operation
The Ground Station UI is not currently implemented, due to late changes in requirements

discussed earlier. The Ground Station will, however, use a Python virtual environment in order to

enforce dependency compliance. Once complete, the Ground Station can be run by downloading

the code from the repository, then starting the virtual environment packaged with the code, and

finally running the command “python3 <name_of_ground_station_file.py> in the command

terminal. The Ground Station SDR will fail to initialize if there is not a connected SDR receiver found,

and the UI will indicate an error connecting to a receiver.

7.2 EPS
The EPS can only be powered by the battery, unlike other sub systems which can be powered and

tested by an external source. We want to limit the number of times that the battery is cycled so only use

the EPS for necessary testing. To use the EPS battery, perform the following:

• Take the metal cover off the EPS. There are 4 screws total.

• Plug the battery in to the mini header. Make sure the battery is plugged in the right way

(battery should not be sticking out).

• Make sure JMP1 and JMP2 are jumped.

https://www.nasa.gov/directorates/heo/home/CubeSats_initiative%5b2
https://github.com/HeronMkII

38

• Plug in the EPS to the computer via micro-USB

• When done, unplug everything, including the battery, and put it back where you found it.

To test the EPS, mount the EPS to the OBC main header extension. Read commands can be sent

through the OBC to test for current battery capacity, temperature, and other information. Here, we

test the temperature of the EPS battery pack:

7.3 ADCS
The ADCS has several tests associated with it and its functionality.

7.3.1 Connection with OBC
To test the connection of the ADCS with the OBC, the ADCS must either be connected to the

OBC through the Pumpkin Board (Or similar testing setup) or directly to the OBC and EPS. When

connected directly to the OBC, the ADCS must be powered by the Voltage Boost Board, while may

interfere with some ADCS tests. Regardless of the setup, test the connection with the ADCS by

calling one or more read functions of the ADCS. Here, we get the Unix time reported by the ADCS.

Figure 15: OBC/ADCS Connection Mock Launch

39

7.3.2 ADCS Momentum Wheel Test
To test the ADCS Momentum Wheels, first install the ADCS into the EPS and OBC, and either

control through the OBC debugging connection or radio commands.

Direction Adjustment Tests

The CubeSat should be positioned onto a frictionless surface or mounted onto a free

rotating base. While running the earth alignment mode on the ADCS, the orientation should be

adjusted pointing away from earth. If working properly, the ADCS will re-orient itself in the desired

position.

Stabilization tests

The CubeSat should be positioned onto a frictionless surface or mounted onto a free

rotating base. While running the detumbling mode on the ADCS, the ADCS should be made to spin

on the testing platform. If working properly, the ADCS should be expected to engage the

momentum wheels (If active detumble is used). The spin will be reduced due to the friction of the

system, therefore, saturation in the wheel’s momentum can be observed as the ADCS counteracts

spin.

7.3.3 ADCS Control Test
The control flow of the ADCS should be examined after all subsystems have been

successfully tested and connected. The main program on the OBC should be tested for varying

initial orientations and angular momentums. The success of this test is measured by how closely the

code reacts to each test, as it compares to the high-level workflow of the ADCS. In other words, we

should expect the system engaging the proper modes when appropriate (Active and Passive

Detumble). Communication loss with the ground station can be simulated by disconnecting the

ground station radio.

7.4 Voltage Boost Board
The Voltage boost board should be tested for sustained voltage output against a load. To do

this, establish communication with EPS, OBC, and ADCS with the ADCS powered by the voltage

boost board. Then ADCS can be set to run the Y Wheel Ramp up test, which will simulate the load of

the ADCS during active detumble.

It is a known issue that the voltage boost board, when connected to the ADCS and OBC, will

make the I2C bus “busy” on occasion. The cause of this issue is unknown and should be fully tested

by future engineers. A working fix is to rebuild the connection between the subsystems.

40

7.5 OBC Enable Roller Switches
The OBC is enabled by the roller switched located on the side of the CubeSat. These switches

will turn on the OBC if only one is released. To test the roller switches, pull the remove before flight

pin on the OBC. Next, release one of the roller switches and ensure that the OBC turns on. This

should be repeated for each roller switch.

7.6 UHF Radio Test
First, using the UHF/OBC configurator tool from ENDUROSAT, set up a connection to xHF and hit

read to ensure that the UHF is preset up correctly. Closeout of the configurator tool and open

PuTTY. Using PuTTY, connect to the UHF and the Kenwood through a serial connection. In the PuTTY

terminal for the Kenwood, set the baud rate to 9600 and turn the echo on. In the PuTTY terminal

for the UHF, type in corresponding ESTTC commands, such as enabling the beacon. To enable the

beacon the command is ES+W22000440 803240D4, which should appear on the Kenwood terminal.

8 Appendix II: Alternative Design Versions

8.1 Java Serial Ground Station
Prior to this semester, the Ground Station that was inherited from the previous senior design

team was a Python tKinter application using the PySerial library to provide for serial port reading.

The application was written in a single, 1400 line file, and had logic embedded into UI elements. In

addition, testing at home with the STM32 F429-I Discovery board, running a mock OBC as the serial

input, revealed that the PySerial library has a known bug which causes connections to “low

number” COM ports to fail. This imposed undue burden on the user to ensure that the COM Port to

which the radio would be connected wasn’t a “low number,” and the connection would often fail

multiple times before finally connecting.

Due to these issues with the Ground Station, as well as a familiarity with Java UI

development, the Ground Station UI was rewritten in Java, using JavaFX and JDK-12. This design

performed well; the following screenshots show the layout, and its success in tests against the OBC,

detailed in the Testing section of this document. This version of the Ground Station also

implemented rotating log file saving – all data written to the UI log was also written to a log file,

which would automatically rotate on the hour (or whenever configured) using the Log4J2 library.

The design used FXML to describe layout, which allowed for code to focus on the logic of the

application rather than the placement of UI elements.

41

The design was finally abandoned when the requirements for the Ground Station changed to

require it to provide a GNURadio SDR and therefore be written in Python.

9 Appendix III: Other Considerations
For questions related to accessing / testing the system remotely, refer to the, “Remote Access

Guide” located within the Git Lab repository.

Figure 16: Java Ground Station UI (Above). Ground Station Command Parsing (Below)

42

